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ABSTRACT
Data on a mushroom based prebiotic supplementation in patients 
with Crohn’s disease (CD) in western population is scarce. In this pilot 
trial, we aimed to assess the clinical efficacy and fecal microbial com-
positional and functional alterations associated with ‘Mycodigest,’ a 
commercial prebiotic supplement composed of three mushroom 
extracts. Patients with mild to moderate CD were recruited to a single 
center, randomized, double-blind, placebo-controlled pilot induction 
trial. Clinical efficacy using the Harvey-Bradshaw index and biochemi-
cal response using C-reactive protein and fecal calprotectin were 
assessed at week 8 post-intervention. Fecal samples were assessed by 
DNA shotgun metagenomic sequencing. A multivariable linear mixed 
effects model was used to assess alteration in fecal microbiome com-
position and function pre- and post-’Mycodigest’ intervention. Clinical 
response was higher in the ‘Mycodigest’ intervention (N = 10) com-
pared to the placebo (N = 6) group (80 vs. 16.7%, respectively, 
p = 0.035). There were no differences in terms of biochemical response 
within each group pre- and post-intervention. Post-’Mycodigest’ inter-
vention, 25 species were found to be differentially abundant com-
pared to baseline, including increase in short chain fatty acid 
producing bacteria, such as Parabacteroides distasonis (Beta coefficient 
0.92, 95% Confidence interval [CI] 0.36–1.47) and Faecalimonas umbil-
icata (Beta coefficient 0.57, 95% CI 0.23–0.90). Two microbial pathways 
related to the metabolism of isoprenoid compounds were increased 
post-’Mycodigest’ intervention. Mushroom based prebiotic supple-
mentation in subjects with CD resulted in clinical improvement which 
may be related to post-intervention favorable compositional and 
functional microbial alterations.

Introduction

Despite a wide variety of advanced medical treatments for Crohn’s disease (CD), their 
overall efficacy is limited, and there is an emerging need for additional therapeutic 
strategies (Kumar et  al. 2022; Chang et  al. 2024). The gut microbiome, including 
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bacterial, mycobial, and viral communities, has a crucial role in the pathogenesis of 
CD (Pascal et  al. 2017; Raygoza Garay et  al. 2023), and thus therapeutic approaches 
that target the gut microbiome, such as dietary interventions, fecal microbial trans-
plantation, probiotics, and prebiotics are being investigated (Yanai et  al. 2022; Gowen 
et  al. 2023).

Prebiotics are dietary supplements, typically fibers, that nourish the human gut 
microbiota to promote host health (Gibson et  al. 2017). Mouse studies have shown 
that prebiotics administration increased the abundance of beneficial bacteria, including 
Bifidobacterium and Lactobacillus (Osman et  al. 2006), known to be depleted in CD, 
and led to reduction in plasma pro-inflammatory cytokines, such as IL-6 and to 
increased expression of intestinal tight junction proteins (Wong et  al. 2022).

In humans, several studies have investigated the effects of administration of the 
prebiotic oligofructose on gut health. In two studies by De Preter et  al. healthy subjects 
who received oligofructose-enriched inulin prebiotic showed a decrease in the formation 
of toxic metabolites in the colon and increase in total fecal bifidobacteria (De Preter 
et  al. 2007, 2008). Specifically in CD, a study by Anderson et  al. showed that decreased 
intake of the prebiotics fructans and oligofructose, was correlated with more severe 
abdominal pain and poorer well-being (Anderson et  al. 2015).

Mushrooms can be considered a potential source of prebiotics as they contain dif-
ferent polysaccharides, such as mannans, chitin, and galactans (Singdevsachan et  al. 
2016). ‘Mycodigest’ is a prebiotic supplement which includes three mushroom extracts, 
i.e. Trametes versicolor (commonly known as turkey tail mushroom), Hericium erinaceus 
(commonly known as lion’s mane mushroom), and Agaricus blazei Murill (commonly 
known as almond mushroom). Previous studies have demonstrated beneficial gut health 
properties of mushroom based prebiotics, potentially via effect on oxidative stress 
reduction, promotion of gut barrier integrity, inhibition of pro-inflammatory cytokines, 
and influence on gut microbiota composition (Ren et  al. 2018; Wang et  al. 2021; 
Impellizzeri et  al. 2022; Ji et  al. 2023). In two placebo controlled studies by Therkelsen 
et  al. intake of A. blazei Murill-based mushroom extract, resulted in beneficial symp-
tomatic effect in patients with CD and ulcerative colitis compared to placebo (Therkelsen 
et  al. 2016a, 2016b). However, it remains to be determined whether this potential 
clinical benefit in CD is also associated with related changes to the gut microbiome.

In this single center, randomized, double-blind, placebo-controlled pilot trial we 
aimed to evaluate the impact of ‘Mycodigest’ supplementation on clinical and bio-
chemical parameters as well as on the fecal microbial composition and function.

Methods

Patient population

Adult patients with CD were recruited in the Tel Aviv Sourasky Medical Center, Tel 
Aviv, Israel, to a randomized, double-blind, placebo-controlled pilot trial.

Patients could be included if they were 18–70 years of age, had an established diag-
nosis of CD, had mild to moderate active disease defined as Harvey-Bradshaw index 
(HBI) score >4 and <16, or HBI <4 and calprotectin >250, on stable medical treatment 
before enrollment (mesalamine at least 6 weeks, or steroids at least 2 weeks, or 
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immunomodulator at least 12 weeks or biologics at least 12 weeks) and throughout 
the study period and signed informed consent. Patients were excluded if they had 
current gut infection, such as Clostridioides difficile infection, positive stool culture or 
parasites, antibiotic use during participation in the study, had chronic conditions, such 
as cancer, organ transplantation, advanced kidney or liver disease, systemic inflamma-
tory conditions other than inflammatory bowel disease (IBD), were pregnant, had an 
ileostomy, pouch or short bowel.

After screening, 19 subjects were recruited to the study and underwent randomiza-
tion. Three subjects dropped from the study following randomization (one subject 
started taking antibiotics for an ear infection, the second subject was diagnosed with 
breast cancer right after recruitment and the third subject decided to withdraw for a 
non-medical issue) leaving 10 subjects in the ‘Mycodigest’ supplementation group and 
six in the placebo group (Supplementary Figure 1).

Intervention

‘Mycodigest’ supplementation and placebo were manufactured by ‘Mycolivia Medicinal 
Mushrooms’ LTD, to be identical in size, shape, and color. ‘Mycodigest’ is a dietary 
supplement which consists of traditional medicinal mushrooms, as essences and 
grounded powder. These include T. coriolus versicolor, H. erinaceus, and A. blazei 
Murill (Supplementary Appendix A). A 10% powder concentrate of Reishi (Ganoderma 
Lucidum) mushroom was added to the placebo pills to achieve similar smell to that 
of the ‘Mycodigest’ supplement. Compliance to treatment was considered as taking 
80% of supplement/placebo treatment and was monitored by telephone calls and emails 
to patients during the study phase, and by counting the pills which were not taken 
at the end of the trial.

Treatment with ‘Mycodigest’ supplement/placebo was titrated with patients receiving 
an initiation dose of 2 pills/day for 7 days, and then gradually increased to 4 pills/day 
for 7 days and then 6 pills/day for 42 days. Thus, the full dose of the treatment was 
administered for 6 wk. Patients were instructed to ingest the capsules in divided dose 
of 2 capsules with or right after each meal.

During the study period the medical care-givers, who were blinded to treatment 
allocation, were able to provide the same standard IBD medical care, nutritional coun-
seling, and other supporting therapies.

The study [ClinicalTrials.gov registration: NCT04329481] was approved by the local 
ethics committee in the Tel Aviv Sourasky Medical Center [IRB #0643-17-TLV]. Due 
to the covid-19 pandemic during the study period, restricting patients visits and sample 
collections, the study was prematurely terminated and reframed as a pilot study.

Clinical and biochemical outcomes

Clinical outcomes were measured at week 8 post- intervention by the HBI score, which 
is composed several variables representing the previous day, as reported by the patient, 
and include the following: (a) general well-being; (b) abdominal pain; (c) number of 
liquid/soft stools; (d) abdominal mass on physical examination and (e) complications 
which include extraintestinal manifestation, anal fissure, new fistula or abscess.  

https://doi.org/10.1080/19390211.2025.2498127
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Clinical response was defined as a decrease in HBI score of ≥ 3 points from baseline, 
whereas clinical remission was defined as HBI score ≤4 (Marín-Jiménez et  al. 2022). 
Biochemical activity was separately assessed pre-and post-intervention within each 
group by serum C-reactive protein and by fecal calprotectin. Fecal calprotectin data 
were available for 9 out of 10 participants in the ‘Mycodigest’ group and for 5 out of 
6 participants in the placebo group.

Stool sampling, DNA extraction, and metagenomic sequencing

Stool samples were self-collected in sterile cups either at our center or at home in the 
morning before the day of the visit. In case the sample was collected at home, the 
cup was stored on ice and brought to our center within 4 h. All samples were imme-
diately stored in −80 °C degrees until processed and analyzed. All the samples (baseline 
and week 8) were processed together at the end of the study to avoid potential tech-
nical batch effect.

Fecal microbial DNA was purified using DNeasy PowerMag Soil DNA extraction 
kit [Qiagen] optimized for Tecan automated platform. Next-generation sequencing 
[NGS] libraries were prepared using Nextera DNA library prep [Illumina] and sequenced 
on a NovaSeq sequencing platform [Illumina]. Sequencing was performed with 75-bp 
single-end reads with the depth of 10 million reads per sample. Metagenomic reads 
containing Illumina adapters, filtered low-quality reads, and trimmed low-quality read 
edges, were filtered. Host DNA was detected by mapping with Bowtie to the human 
genome with inclusive parameters and removed those reads. Bacterial relative abun-
dance estimation was performed by mapping bacterial reads to species-level genome 
bins [SGB] representative genomes (Pasolli et  al. 2019). All SGB representatives with 
at least 5 genomes in a group were selected, and for these representatives’ genomes, 
only unique regions as a reference dataset were kept. Mapping was performed using 
Bowtie (Langmead and Salzberg 2012), and abundance was estimated by calculating 
the mean coverage of unique genomic regions across the 50% most densely covered 
areas, as previously described (Korem et  al. 2015).

HUMAnN3.6 (v0.11.2) software was used to identify the taxonomic and functional 
profiles of each community, using MetaPhlAn3.0 (v2.7.8) for taxonomy and the 
UniRef90 database for function, following all default parameters (Abubucker et  al. 
2012; Suzek et  al. 2015). Resulting functional annotations were mapped to the MetaCyc 
gene family ontology (Caspi et  al. 2016).

Assessment of fecal calprotectin

Fecal calprotectin concentrations were analyzed by the Liaison XL machine using the 
designated CLIA Liaison-calprotectin kit (Diasorin, Saluggia, Italy) according to man-
ufacturer instructions.

Statistical analysis

For the clinical data, the Shapiro-Wilk test was used to determine normality of 
outcomes-related data. All continuous and ordinal outcomes data (fecal calprotectin, 
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CRP, HBI, stool frequency, and abdominal pain scores) were non-normally distrib-
uted, and as such the Wilcoxon signed-rank test was used for these comparisons 
within the groups. The Fisher’s Exact test was used to compare categorical data 
(clinical response and remission) between groups. p-Value <0.05 was considered 
significant.

For the microbiome data, to assess alpha diversity, species level Shannon index was 
compared between pre- and post-’Mycodigest’ intervention using the Wilcoxon rank 
sum test. Beta diversity was assessed with principal coordinates analysis plots at the 
species level based on Bray-Curtis dissimilarity index to assess post-’Mycodigest’ inter-
vention microbial community shifts. Permutation analysis of variance (PERMANOVA) 
was applied using the adonis function on distance matrices with 1000 permutations. 
Subjects ID’s were included as strata to account for the paired pre- and post-intervention 
samples from the same subjects (vegan (v2.5-7) R package).

A multivariable linear mixed effects model (multivariate analysis by linear models 
[MaAsLin2] (v1.4.0) R package (Mallick et  al. 2021)) was used to assess associations 
between ‘Mycodigest’ intervention with changes in individual gut microbial species 
and metabolic pathways. The effect size (beta-coefficients) generated by the model, 
represents the average change in the relative abundance of the feature between the 
pre- and post-intervention state. The model filtering parameters were set to include 
only features with minimum prevalence of 20% and minimum abundance higher than 
0.01%. Age, sex, and body-mass-index were included as co-variates in all models. To 
account for pre-and post-intervention samples from the same subject, subjects’ IDs 
were included in the model as random effects.

For the microbial compositional data, after the removal of singletons, data was 
converted to relative abundance, and agglomeration to species level was performed. 
After applying filtering steps, 95 species level taxa were included in the analysis. For 
the microbial functional analysis, the relative abundances of the unstratified MetaCyc 
metabolic pathways were analyzed. After applying filtering steps, 185 pathways were 
included in the analysis.

MaAsLin2 accounts for multiple testing using Benjamini-Hochberg correction. 
Significant associations were considered for features with p-values <0.05 and false 
discovery rates (FDR) values <0.2 (Benjamini and Hochberg 1995; Mallick et  al. 2021).

Results

Cohort description

The cohort of patients with Crohn’s disease included 10 subjects in the ‘Mycodigest’ 
group and six subjects in the placebo group. The median age of the entire cohort was 
32.5 years (Interquartile range [IQR] [29.7–42.5]), and 50% were females. There were 
no significant differences between the groups in age, gender, body mass index, smoking 
status, disease duration, disease location and behavior, baseline clinical activity, and 
inflammatory markers of C-reactive protein and fecal calprotectin (Table 1). To note, 
three patients in the ‘Mycodigest’ group were on biologic treatment with adalimumab 
compared to none in the Placebo group, however, all three were on stable treatment 
at the time of recruitment and continued the treatment throughout the study (Table 1).
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Subjects in the ‘Mycodigest’ group achieved higher rates of clinical response 
compared to placebo

Clinical response at 8 weeks occurred in 80% of the patients in the ‘Mycodigest’ group 
versus 16.7% in the placebo group (p = 0.035). Clinical remission rates at week 8 were 
also higher in the ‘Mycodigest’ compared to the placebo group, 60 and 16.7%, respectively, 
however, this difference was not statistically significant (p = 0.14) (Figure  1). For the 
specific components of the HBI, in terms of the outcome of abdominal pain, at week 8, 
in the Mycodigest group, 3 patients (30%) reported an improvement, 7 patients (70%) 
reported no change and none reported worsening of their abdominal pain. Contrarily, 
in the placebo group, only one patient (16.7%) reported an improvement, 2 patients 
(33.3%) reported no change and 3 patients (50%) reported worsening of their abdominal 
pain. However, these observed changes between the groups did not reach statistical sig-
nificance (Figure 2(A)). In terms of the number of liquid/soft stools per day, a significant 
decrease from median 3.5 [IQR 2.0–5.0] stools/day, at week 0 to 1.0 [IQR 0–4.75] stools/
day, at week 8 (p = 0.0284) in the Mycodigest group was observed, while no significant 
change was observed in the placebo group with 3.0 [IQR 1.25–4.0] stools/day at week 
0, compared to 2.5 [IQR 1.0–4.0] stools/day at week 8 (p = 0.99) (Figure 2(B)).

Table 1.  Cohort demographics and clinical data.
Mycodigest (N = 10) Placebo (N = 6) p-Value

Gender, females (%) 6 (60.0%) 2 (33.3%) 0.61
Age, median years [IQR] 32.5 [26.0; 42.0] 33.5 [31.0; 65.0] 0.62
BMI, median kg/m2 [IQR] 23.6 [20.5; 25.8] 22.3 [20.7; 25.6] 0.90
Disease duration, median  

years (IQR)
9.0 [4.0; 16.0] 14.0 [1.0; 25.0] 0.99

Smoking, n (%) 0.051
 N on-smoker 7 (70.0%) 2 (33.3%)
 A ctive smoker 2 (20.0%) 0 (0%)
 P ast smoker 1 (10.0%) 4 (66.7%)
CD Montreal location, n (%) 0.11
 I leum (L1) 3 (30.0%) 4 (66.7%)
  Colon (L2) 2 (20.0%) 2 (33.3%)
 I leo-colonic (L3) 5 (50.0%) 0 (0%)
CD Montreal behavior, n (%) 0.41
 I nflammatory (B1) 8 (80.0%) 4 (66.7%)
  Stricturing (B2) 1 (10.0%) 2 (33.3%)
 P enetrating (B3) 1 (10.0%) 0 (0%)
CD perianal disease, n (%) 3 (30.0%) 1 (20.0%) 0.99
Current treatment, n (%)
 N o treatment 4 (40.0%) 2 (33.3%) 0.99
 M esalamine 2 (20.0%) 1 (16.7%) 0.99
 I nfliximab 0 (0%) 0 (0%) 1.00
 A dalimumab 3 (30.0%) 0 (0%) 0.41
  Vedolizumab 0 (0%) 0 (0%) 1.00
  Steroids 0 (0%) 0 (0%) 1.00
Biologic naive, n (%) 6 (60.0%) 4 (66.7%) 0.99
Harvey Bradshaw Index, 

baseline, median [IQR]
7.0 [5.0; 10.0] 5.0 [3.0; 6.0] 0.053

Fecal calprotectin, baseline 
(μg/g), median [IQR]

135.5 [93.0; 411.0] 316.5 [190.0; 461.0] 0.37

C-reactive protein, baseline 
(mg/dL), median [IQR]

3.0 [0.8; 4.8] 6.3 [5.0; 9.8] 0.12

IQR: interquartile range; BMI: body mass index; CD: Crohn’s disease.
Demographic and clinical data for the prebiotic and placebo intervention groups. No statistically significant differences 

were observed for any of the variables between the groups. Comparison of categorical variables was performed using 
the χ2 test. For continuous variables, Kruskal-Wallis or Wilcoxon signed-rank tests were applied to compare the 
medians.
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No statistically significant changes in either C-reactive protein or fecal calprotectin 
levels were noted in either group comparing week 0 to week 8 levels (Supplementary 
Figures 2 and 3, respectively).

‘Mycodigest’ intervention was associated with individual microbial species 
alterations

We next performed a paired metagenomic analysis comparing the microbial compo-
sitional changes pre- and post-’Mycodigest’ intervention. No differences in either alpha 
diversity (Shannon index, p = 0.68) or in beta diversity (Bray Curtis index, p = 0.19) 

Figure 1.  Clinical response and remission outcome between the ‘Mycodigest’ and placebo interven-
tion groups. Stacked bar plots comparing the proportion of clinical response (A) and clinical remission  
(B) between the ‘Mycodigest’ prebiotic (yellow color) and placebo (purple color) intervention groups. 
Fisher’s exact test was used to compare both groups with p-value < 0.05 considered significant.

Figure 2. P re- and post-intervention changes in abdominal pain and number of liquid stools per day 
scores in the ‘Mycodigest’ and placebo groups. Changes in the abdominal pain scores (A) and in the 
number of liquid stools per day (B) in the ‘Mycodigest’ and placebo groups pre- and post-intervention, 
at week 0 and week 8, respectively. The Wilcoxon signed-rank test was used with p-value < 0.05 
considered significant.

https://doi.org/10.1080/19390211.2025.2498127
https://doi.org/10.1080/19390211.2025.2498127
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were noted at week 8 following ‘Mycodigest’ supplementation (Figures 3(A,B), respec-
tively). We identified 25 individual species that were differentially abundant at week 
8 post-intervention (p < 0.05 and q < 0.2) (Supplementary Table 1). Among those species, 
Clostridium sp. AF34 10BH (Beta coefficient 1.75, 95% Confidence interval [CI] 0.93–
2.57), Parabacteroides distasonis (Beta coefficient 0.92, 95% CI 0.36–1.47), Faecalimonas 
umbilicata (Beta coefficient 0.57, 95% CI 0.23–0.90), and Sutterella wadsworthensis 
(Beta coefficient 0.56, 95% CI 0.25–0.87) were significantly increased, whereas 
Lachnospira sp. NSJ 43 (Beta coefficient −1.45, 95% CI −2.34 to −0.55), Clostridiales 
bacterium KLE1615 (Beta coefficient −1.41, 95% CI −2.15 to −0.67), Blautia sp. AF19 
10LB (Beta coefficient −1.03, 95% CI −1.38 to −0.68), and Clostridiaceae bacterium 
(Beta coefficient −0.57, 95% CI −0.95 to −0.19) were significantly decreased 
post-intervention at week 8 (q < 0.05 for all) (Figure 3(C)).

In an exploratory analysis we observed a non-significant numerical increase in alpha 
diversity (Shannon index, p = 0.57) and only a trend toward significance in microbial 
compositional shifts (Bray Curtis index, PERMANOVA: R2 = 0.19, p = 0.08) when com-
paring subjects who achieved clinical remission at week 8 (N = 5) versus those who 
did not (N = 3) in the ‘Mycodigest’ group intervention (Supplementary Figure 4).

Figure 3.  Diversity and species differential abundance in the ‘Mycodigest’ intervention group pre- and 
post-intervention. (A) Alpha diversity pre- and post-’Mycodigest’ supplementation (blue and orange 
colors, respectively) expressed by the Shannon index. p-Value is calculated using the Wilcoxon test. (B) 
Beta diversity assessed with principal coordinates analysis plots at the species level based on 
Bray-Curtis dissimilarity index. Ellipsoids represent a 95% confidence interval (blue  =  pre-’Mycodigest’ 
supplementation; orange  =  post-’Mycodigest’ supplementation). Permutation analysis of variance 
(PERMANOVA) was applied on distance matrices with 1000 permutations. (C) Coefficient plot showing 
the effect size and 95% confidence interval (x-axis) for the species found to be differentially abundant 
post-’Mycodigest’ intervention (y-axis), based on MaAsLin2 adjusted for age, gender and body mass 
index. Only species with q-values < 0.05 are shown (for the full list of species with p-value < 0.05 
and q-values < 0.2 see Supplementary Table 1). Purple color denotes taxa increased post-’Mycodigest’ 
intervention and pink color denotes taxa decreased post-’Mycodigest’ intervention.

https://doi.org/10.1080/19390211.2025.2498127
https://doi.org/10.1080/19390211.2025.2498127
https://doi.org/10.1080/19390211.2025.2498127
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‘Mycodigest’ supplementation led to alterations in microbial metabolic pathways 
related to farnesol and polyisoprenoid biosynthesis

We next assessed the effect of ‘Mycodigest’ supplementation on the microbial functional 
capacity. We identified four metabolic pathways that were all significantly increased 
post-intervention (Supplementary Table 2). Two pathways were related to the metab-
olism of isoprenoid compounds, Including PWY6859: all-trans-farnesol biosynthesis 
(Beta coefficient 0.29, 95% CI 0.12–0.52) and polyisoprenoid biosynthesis (Escherichia 
coli) (Beta coefficient 0.15, 95% CI 0.05–0.25) (Figure 4).

Discussion

In this pilot study, we found that patients with clinically active CD who received 
‘Mycodigest’ prebiotic supplementation containing three mushroom extracts of T. cori-
olus versicolor, H. erinaceus, and A. blazei Murill, showed higher rates of clinical 
response compared to placebo. Moreover, the prebiotic intervention was associated 
with microbial compositional alterations toward more beneficial taxa and with microbial 
functional shifts toward mycobial related pathways.

Data on the use of mushrooms based prebiotics in CD is scarce, and a limited 
number of human studies from western countries have examined its potential beneficial 
effect (Førland et  al. 2011; Therkelsen et  al. 2016a). Therkelsen et  al. showed that 
patients with CD who received AndoSan™, an A. blazei Murill-based mushroom extract, 
improved symptomatically compared to baseline. However, when compared to the 
placebo group, no differences were noted in terms of symptoms, fatigue, quality of 
life, and fecal calprotectin (Therkelsen et  al. 2016a). In our study, we showed that the 
three mushrooms extract based ‘Mycodigest’ prebiotic intervention was associated with 
symptomatic improvement compared to placebo, but similarly to the study by Therkelsen 
et  al., this was not associated with more stringent end points of C-reactive protein or 
fecal calprotectin improvement within each group comparing pre-and post-intervention. 

Figure 4. M icrobial MetaCyc pathways differential abundance in the ‘Mycodigest’ intervention group 
pre- and post-intervention. Box plots showing the comparison between the relative abundances of 
microbial MetaCyc pathways associated with pre-and post-’Mycodigest’ prebiotic intervention. q-values 
generated by MaAsLin2 regression models (see Methods).

https://doi.org/10.1080/19390211.2025.2498127
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This may suggest that this symptomatic improvement is mediated via other biological 
pathways not directly related to decrease in inflammatory burden. Alternatively, this 
may be the result of the small cohort or could signify a longer duration required for 
biomarker responses.

We next assessed the ‘Mycodigest’ prebiotic intervention effect on fecal microbial 
composition. Previous studies demonstrated the potential prebiotic effects of T. coriolus 
versicolor (Yu et  al. 2013; Pallav et  al. 2014), H. erinaceus (Diling et  al. 2017; Li et  al. 
2021), and A. blazei Murill (Zhao et  al. 2024) by promoting the growth of beneficial 
taxa. These beneficial microbial effects were mainly exerted via polysaccharides, the 
major active ingredients in these mushrooms, which possess several pharmacological 
properties including immune modulation and anti-oxidative effects (He et  al. 2017; Li 
et  al. 2021).

Following the ‘Mycodigest’ prebiotic intervention, we observed an increase in the 
abundance of two short-chain fatty acid (SCFA) producing bacteria (Ezeji et  al. 2021; 
Shin et  al. 2023), P. distasonis and F. umbilicata. SCFAs are known to promote gut 
health via their immune-modulating and anti-inflammatory effects (Caetano and 
Castelucci 2022). The potential anti-inflammatory effect of P. distasonis has been shown 
in several animal studies. In a study by Kverka et  al. oral administration of P. distasonis 
antigens, attenuated DSS murine colitis model through modulation of immunity and 
microbiota composition (Kverka et  al. 2011). Additionally, a study by Cuffaro et  al. 
showed that in a TNBS induced colitis mouse model, several strains of P. distasonis 
led to gut barrier enhancement and promotion of regulatory T-cell differentiation 
(Cuffaro et  al. 2020). The potential gut beneficial effect of F. umbilicata has been 
shown in the study by Shin et  al. in which increased abundance of F. umbilicata was 
associated with clinical response in subjects with diarrhea-predominant irritable bowel 
syndrome following multi-strain probiotics supplementation (Shin et  al. 2022).

Lastly, we identified an increase in two microbial metabolic pathways related to 
isoprenoid compounds metabolism, i.e. PWY6859: all-trans-farnesol biosynthesis and 
polyisoprenoid biosynthesis, following the ‘Mycodigest’ prebiotic supplementation. 
Interestingly, farnesol (also known as isoprenoid) has been described as a quorum 
sensing molecule in fungi (Wang et  al. 2017), and has been demonstrated to carry 
anti-oxidant and anti-inflammatory properties (Ku and Lin 2015; Wang et  al. 2017). 
Farnesol is a type of terpene alcohol predominantly found in essential oils of various 
plants in nature (Jung et  al. 2018). A study by Wang et  al. showed that exposure of 
fungal cultures to farnesol led to enhanced polysaccharide production in T. versicolor 
via promotion of polysaccharide biosynthesis and regulation of fungal morphology 
resulting in increased antioxidant activity (Wang et  al. 2017). Moreover, a mouse study 
by Ku et  al. showed that farnesol supplementation resulted in decreased TNF-α secre-
tion from peritoneal macrophages, highlighting its potential anti-inflammatory effect 
(Ku and Lin 2015).

Our study has several limitations. First, the sample size in this study was small and 
therefore our findings will need to be further validated in larger human studies in 
western population. Second, as the ‘Mycodigest’ prebiotic used in our study contains 
three types of mushroom extracts it is hard to determine whether our findings of 
favorable clinical response and microbial alterations were driven by specific component 
or by a synergistic effect. Third, although the placebo capsules contained only a small 
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amount of powder concentrate of Reishi mushroom, it remains to be determined 
whether it had a clinical or microbial effect beyond its purpose to achieve similar 
smell to that of the ‘Mycodigest’ supplement.

In summary, in this pilot study, we observed a modest clinical response to a mush-
room based prebiotic intervention in subjects with Crohn’s disease, which may be 
related to favorable compositional and functional microbial alterations.
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